

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US**

Certificate of Analysis

Kaycha Labs Gummy Bears NT, CBD 10mg per 3.5g per gummy

Matrix: Edible

Sample: DA20114007-001 Harvest/Lot ID: GBNT1422

> Batch#: GBNT1422 Seed to Sale# N/A

Batch Date: N/A Sample Size Received: 150 gram

> Total Weight/Volume: N/A Retail Product Size: 3.5 gram

Ordered: 01/14/22

sampled: 01/14/22 Completed: 01/18/22

Sampling Method: SOP Client Method

PASSED

Page 1 of 4

Jan 18, 2022 | HIGH ROLLER PRIVATE LABEL LLC

4095N 28TH WAY HOLLYWOOD, FL, 33020, US

SAFETY RESULTS

Pesticides

Heavy Metals **PASSED**

Microbials

Mycotoxins

Residuals Solvents PASSED

PASSED

Water Activity

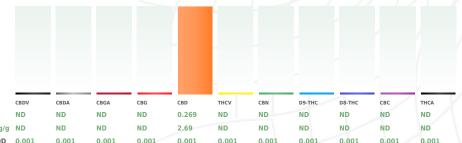
Moisture **NOT TESTED**

Terpenes

CANNABINOID RESULTS

Total THC

TOTAL THC/Gummy:0 mg



Total CBD TOTAL CBD/Gummy :9.415 mg

Total Cannabinoids

Total Cannabinoids/Gummy:9.415

	Filth			PASSED
Analyzed By	Weight	Extraction date	Extracted By	
457	NA	NA		NA
Analyte		LOD	A.L	Result
Filth and Foreig	n Material	0.1	5	ND
Analysis Moth	ad COD T 40 01	12 Patch Date	. 01/10/22	10.01.56

Analytical Batch -DA036996FIL Reviewed On - 01/18/22 11:01:52 Instrument Used : Filth/Foreign Material Microscope

Cannabinoid Profile Test

Extraction date : Extracted By: Analysis Method -SOP.T.40.020, SOP.T.30.050 Batch Date : 01/14/22 10:52:40 Reviewed On - 01/18/22 10:26:50 Instrument Used : DA-LC-003 (Edibles) Running On: 01/14/22 21:52:24

Reagent Consums. ID Dilution 011222.R56 61633-125C6-125E 11945-019CD-019C

Full spectrum cannabinoid analysis utilizing High Performance Liquid Chromator Shimadzu High Sensitivity Method SOP.T.40.020 for analysis. LOQ for all cannab

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

01/18/22

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US**

Kaycha Labs

Gummy Bears NT, CBD 10mg per 3.5g per gummy

Matrix : Edible

Certificate of Analysis

HIGH ROLLER PRIVATE LABEL LLC

4095N 28TH WAY

HOLLYWOOD, FL, 33020, US Telephone: (954) 505-4481 Email: admin@highrollerllc.com Sample: DA20114007-001 Harvest/Lot ID: GBNT1422

Batch#: GBNT1422 Sampled: 01/14/22

Ordered: 01/14/22

Sample Size Received: 150 gram

Total Weight/Volume: N/A Completed: 01/18/22 Expires: 01/18/23

Sample Method : SOP Client Method

PASSED

Page 2 of 4

Pesticides

PASSED

0.01 0.01 0.01 0.01 0.01 0.01	ppm ppm ppm ppm	0.3 3 2	ND ND
0.01 0.01 0.01	ppm		ND
0.01 0.01		2	
0.01	ppm	-	ND
		3	ND
0.01	ppm	0.1	ND
	ppm	3	ND
0.01	ppm	3	ND
0.01	ppm	0.5	ND
0.01	PPM	3	ND
0.05	ppm	0.5	ND
0.01	ppm	0.1	ND
0.1	ppm	3	ND
0.1	ppm	3	ND
0.01	ppm	0.1	ND
0.02	ppm	0.5	ND
0.01	ppm	0.1	ND
0.01	ppm	0.1	ND
0.01	ppm	3	ND
0.01		0.1	ND
0.01		1.5	ND
			ND
			ND
			ND
0.01		0.1	ND
			ND ND
			ND ND
			ND ND
			ND ND
	0.01 0.05 0.01 0.1 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 PPM 0.05 ppm 0.01 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.01 ppm	0.01 PPM 3 0.05 ppm 0.5 0.01 ppm 0.1 0.1 ppm 3 0.01 ppm 3 0.01 ppm 0.1 0.02 ppm 0.5 0.01 ppm 0.1 0.02 ppm 0.1 0.01 ppm 1.5 0.01 ppm 0.1 0.02 ppm 0.1 0.03 ppm 0.1 0.04 ppm 0.1 0.05 ppm 0.1 0.01 ppm 0.5 0.05 ppm 0.5 0.05 ppm 0.5 0.06 ppm 0.5 0.07 0.08 ppm 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Pesticides	LOD	Units	Action Level	Result
PROPOXUR	0.01	ppm	0.1	ND
PYRETHRINS	0.05	ppm	1	ND
PYRIDABEN	0.02	ppm	3	ND
SPIROMESIFEN	0.01	ppm	3	ND
SPIROTETRAMAT	0.01	ppm	3	ND
SPIROXAMINE	0.01	ppm	0.1	ND
TEBUCONAZOLE	0.01	ppm	1	ND
THIACLOPRID	0.01	ppm	0.1	ND
THIAMETHOXAM	0.05	ppm	1	ND
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.005	PPM		ND
TOTAL DIMETHOMORPH	0.02	PPM	3	ND
TOTAL PERMETHRIN	0.01	ppm	1	ND
TOTAL SPINETORAM	0.02	PPM	3	ND
TOTAL SPINOSAD	0.01	ppm	3	ND
TRIFLOXYSTROBIN	0.01	ppm	3	ND
PENTACHLORONITROBENZENE (PCNB) *	0.01	PPM	0.2	ND
PARATHION-METHYL *	0.01	PPM	0.1	ND
CAPTAN *	0.025	PPM	3	ND
CHLORDANE *	0.01	PPM	0.1	ND
CHLORFENAPYR *	0.01	PPM	0.1	ND
CYFLUTHRIN *	0.01	PPM	1	ND
CYPERMETHRIN *	0.01	PPM	1	ND

居:	Pesti
0	

icides

Analyzed by Extraction date D85 , 1665 0.9211g 01/14/22 12:01:12
Analysis Method - SOP.T.30.065, SOP.T.40.065, SOP.T.40.066, SOP.T.40.070 , SOP.T.30.065, SOP.T.40.070
Analytical Ratch - Page 2017

P.T40.070 alytical Batch - DA036891PES , DA036869VOL

Instrument Used: DA-LCMS-003 (PES), DA-GCMS-001 Running On: 01/14/22 15:21:15, 01/14/22 15:06:02

Batch Date: 01/14/22 10:34:25

Reagent Dilution Consums, ID 250

Pesticide screen is performed using LC-MS and/or GC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Currently we analyze for 67 Pesticides. (Method: SOP.T.30.060 Sample Preparation for Pesticides Analysis via LCMSMS and GCMSMS. SOP.T.40.065/SOP.T.40.066/SOP.T.40.070 Procedure for Pesticide Quantification Using LCMS and GCMS). * Volatile Pesticide screening is performed using GC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Analytes marked with an asterisk were tested using GC-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control OC parameter, NC=Non-controlled OC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

01/18/22

PASSED

Extracted By

Kaycha Labs

Gummy Bears NT, CBD 10mg per 3.5g per gummy

Matrix : Edible

PASSED

Certificate of Analysis

HIGH ROLLER PRIVATE LABEL LLC

4095N 28TH WAY HOLLYWOOD, FL, 33020, US **Telephone:** (954) 505-4481 **Email:** admin@highrollerllc.com

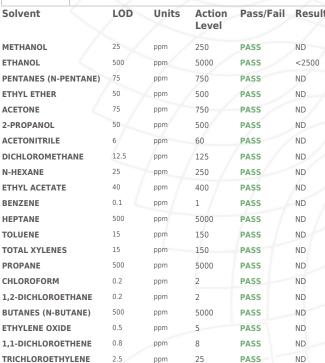
DAVIE, FL, 33314, US

Sample: DA20114007-001 Harvest/Lot ID: GBNT1422

Batch#:GBNT1422 Sampled:01/14/22

Ordered: 01/14/22

Sample Size Received: 150 gram


Total Weight/Volume: N/A
Completed: 01/18/22 Expires: 01/18/23
Sample Method: SOP Client Method

Page 3 of 4

Residual Solvents

PASSED

Residual Solvents

PASSED

Analyzed by	Weight	Extraction date	Extracted By
850	0.0231g	01/15/22 05:01:57	574

Analysis Method -SOP.T.40.032

Analytical Batch -DA036919SOL Reviewed On - 01/18/22 11:01:57

Instrument Used : DA-GCMS-002 Running On : 01/18/22 10:27:45 Batch Date : 01/14/22 15:42:42

Reagent	Dilution	Consums. ID	
030420.09	1	27296	
		KE136	

Residual solvents screening is performed using GC-MS which can detect below single digit ppm concentrations. Currently we analyze for 21 Residual solvents.(Method: SOP.T.40.032 Residual Solvents Analysis via GC-MS).

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

01/18/22

Signature

Kaycha Labs

Gummy Bears NT, CBD 10mg per 3.5g per gummy

Matrix: Edible

Certificate of Analysis

PASSED

HIGH ROLLER PRIVATE LABEL LLC

4095N 28TH WAY

DAVIE, FL, 33314, US

HOLLYWOOD, FL, 33020, US Telephone: (954) 505-4481 Email: admin@highrollerllc.com Sample: DA20114007-001 Harvest/Lot ID: GBNT1422

Batch#: GBNT1422 Sampled: 01/14/22

Ordered: 01/14/22

Sample Size Received: 150 gram Total Weight/Volume: N/A

Completed: 01/18/22 Expires: 01/18/23 Sample Method : SOP Client Method

Page 4 of 4

Running On:

021121.10

Microbials

PASSED

Mycotoxins

PASSED

Analyte	
ESCHERICHIA COLI SHIGELLA SPP	
SALMONELLA SPECIFIC GENE	
ASPERGILLUS FLAVUS	
ASPERGILLUS FUMIGATUS	
ASPERGILLUS TERREUS	
ASPERGILLUS NIGER	

Instrument Used: PathogenDx Scanner DA-111

LOD **Action Level** Result not present in 1 gram. not present in 1 gram.

Analysis Method -SOP.T.40.043 / SOP.T.40.044 / SOP.T.40.041 Analytical Batch -DA036907MIC Batch Date: 01/14/22 11:22:57

Analyzed by	Weight	Extraction date	Extracted By
513	1.002g	01/14/22 12:01:49	513

Reagent Dilution 121421.26 120721.R42

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method consisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which avoids purification. (Method SOP.T.40.043) If a pathogenic Escherichia Coli, Salmonella, Aspergillus fiumigatus, Aspergillus faves, or Aspergillus terreus is detected in 1g of a sample, the sample fails the microbiological-impurity testing. Pour-plating is used for quantitation and confirmation, Total Yeast and Mold has an action limit of 100.000 CFU.

Analyte	LOD	Units	Result	Action Level
AFLATOXIN G2	0.002	ppm	ND	0.02
AFLATOXIN G1	0.002	ppm	ND	0.02
AFLATOXIN B2	0.002	ppm	ND	0.02
AFLATOXIN B1	0.002	ppm	ND	0.02
OCHRATOXIN A	0.002	nnm	ND	0.02

Analysis Method -SOP.T.30.065, SOP.T.40.065

Analytical Batch -DA036892MYC | Reviewed On - 01/17/22 14:23:44

Instrument Used: DA-LCMS-003 (MYC) Running On: 01/14/22 15:21:16 Batch Date: 01/14/22 10:35:29

Analyzed by	Weight	Extraction date	Extracted By
585	g	01/17/22 02:01:32	585

Aflatoxins B1, B2, G1, G2, and Ochratoxins A testing using LC-MS. (Method: SOP.T.30.065 for Sample Preparation and SOP.T40.065 Procedure for Mycotoxins Quantification Using LCMS. LOQ 1.0 ppb). Aflatoxin B1, B2, G1, and G2 must individually be <20ug/Kg. Ochratoxins must be $<20\mu g/Kg$

Heavy Metals

PASSED

Reagent	Reagent	Dilution	Consums. ID	
122221.R47	011022.R03	100	179436	
010422.R26	010522.R40		3146-870-008	
011122.R21	122821.R12		12265-115CC	
011022.R04	010522.R39			
010422.R25	021921.13			
011022.R02	120121.08			

Metal	LOD	Unit	Result	Action Level
ARSENIC	0.02	PPM	ND	1.5
CADMIUM	0.02	PPM	ND	0.5
MERCURY	0.02	PPM	ND	3
LEAD	0.05	PPM	ND	0.5
Analyzed by	Weight	Extraction	ı date	Extracted By
1022	0.2534g	01/14/22 11	:01:37	1879

Analysis Method -SOP.T.40.050, SOP.T.30.052, SOP.T.30.053, SOP.T.40.051 Analytical Batch -DA036874HEA | Reviewed On - 01/16/22 13:52:40

Instrument Used: DA-ICPMS-003 Running On: 01/14/22 19:53:50 Batch Date: 01/14/22 09:35:26

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma – Mass Spectrometer) using Method SOP.T.30.052, SOP.T.30.053 Sample Preparation for Heavy Metals Analysis via ICP-MS and SOP.T.40.050, SOP.T.40.051 Heavy Metals Analysis via ICP-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control OC parameter, NC=Non-controlled OC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

01/18/22

Signature